organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Aminopyridinium 4-carboxybutanoate

Hoong-Kun Fun,^a*‡ Madhukar Hemamalini^a and Venkatachalam Rajakannan^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bBiomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore 138673 Correspondence e-mail: hkfun@usm.my

Received 12 July 2010; accepted 19 July 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.053; wR factor = 0.154; data-to-parameter ratio = 27.3.

The asymmetric unit of the title salt, $C_5H_7N_2^+ \cdot C_5H_7O_4^-$, contains two 4-aminopyridinium cations and two 4-carboxybutanoate anions. Each 4-aminopyridinium cation is planar, with a maximum deviation of 0.005 (2) Å. Both 4-carboxybutanoate anions adopt an extended conformation. In the crystal structure, the cations and anions are linked via N- $H \cdots O, O - H \cdots O$ and $C - H \cdots O$ hydrogen bonds, forming a two-dimensional network parallel to the bc plane.

Related literature

For the biological activity of 4-aminopyridine, see: Schwid et al. (1997). For crystal structure determinations of 4-aminopyridine, see: Chao & Schempp (1977); Anderson et al. (2005). For conformations of 4-carboxybutanoate (hydrogen glutarate) anions, see: Saraswathi et al. (2001).

Experimental

Crystal data $C_5H_7N_2^+ \cdot C_5H_7O_4^ M_r = 226.23$ Monoclinic, $P2_1/c$ a = 9.6159 (2) Å

b = 10.3065 (2) Å

c = 22.6801 (5) Å

V = 2197.45 (8) Å³

 $\beta = 102.143 (1)^{\circ}$

Z = 8Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.963, T_{\max} = 0.978$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ 290 parameters $wR(F^2) = 0.154$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ 7931 reflections

T = 296 K

 $0.35 \times 0.26 \times 0.21 \text{ mm}$

7931 measured reflections

7931 independent reflections

5556 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1A - H1O1 \cdots O1B^{i}$	0.89	1.57	2.4591 (17)	172
$N1A - H1AA \cdots O1B^{ii}$	0.86	2.59	3.183 (2)	127
$N1A - H1AA \cdots O2B^{ii}$	0.86	1.87	2.729 (2)	177
$N2A - H2AC \cdots O2A^{iii}$	0.86	2.18	2.9627 (19)	151
$N2A - H2AD \cdots O4B$	0.86	2.10	2.948 (2)	170
$O3B-H1O3\cdots O3A^{iv}$	0.92	1.56	2.4791 (17)	176
$C10A - H10A \cdots O4B^{v}$	0.93	2.55	3.161 (2)	124
$C7A - H7AA \cdots O3B$	0.93	2.47	3.370 (2)	162

Symmetry codes: (i) x - 1, y + 1, z - 1; (ii) x - 1, y + 1, z; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) x, y, z + 1; (v) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2401).

References

Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, 01350-01353.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557-1564.

Saraswathi, N. T., Manoj, N. & Vijayan, M. (2001). Acta Cryst. B57, 366-371. Schwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2010). E66, o2108 [doi:10.1107/S1600536810028734]

4-Aminopyridinium 4-carboxybutanoate

H.-K. Fun, M. Hemamalini and V. Rajakannan

Comment

4-Aminopyridine (fampridine) is used in the treatment of neurological ailments, such as multiple sclerosis (MS), with tests showing that fampridine improves motor function in MS patients (Schwid *et al.*, 1997). The room temperature crystal structure of 4-aminopyridine was reported many years ago (Chao & Schempp, 1977); a redetermination at low temperature has been reported more recently (Anderson *et al.*, 2005). Aliphatic dicarboxylic acids, HOOC(CH₂)_nCOOH, exhibit interesting complexing properties. This is due to the flexibility of the ligand which may be completely or only partially deprotonated. Glutaric acid (1,3-propanedicarboxylic acid) is a white crystalline solid which is very soluble in water. The compound is a useful building block for polymers, an intermediate in chemical synthesis and it is used in the manufacture of an antiretroviral drug. The compound is also used in solder flux. The present study has been carried out to study the hydrogen bonding patterns present in the crystal structure of 4-aminopyridinium 4-carboxybutanoate.

The asymmetric unit of the title compound consists of two crystallographically independent 4-aminopyridinium cations (A and B) and 4-carboxybutanoate (hydrogen glutarate) anions (A and B) (Fig. 1). Each 4-aminopyridinium cation is planar, with a maximum deviation of 0.005 (2) Å for atom C7A in cation A and 0.005 (2) Å for atom C9B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C6A—N1A—C10A [120.06 (16)°] and C6B—N1B—C10B [120.21 (16)°] angles compared to those observed in the unprotonated structure of 4-aminopyridine (Anderson *et al.*, 2005). The conformations of the 4-carboxybutanoate anions can be described by the two torsion angles C1A—C2A—C3A—C4A of 175.44 (15)° and C2A—C3A—C4A—C5A of 174.42 (15)° in anion A; C1B—C2B—C3B—C4B of -175.99 (14)° and C2B—C3B—C4B—C5B of -176.94 (15)° in anion B. These torsion angles indicate that both anions adopt fully extended conformations (Saraswathi *et al.*, 2001).

In the crystal structure (Fig. 2), the cations and anions are linked via O1A—H1O1…O1B, N1A—H1AA…O1B, N1A—H1AA…O2B, N2A—H2AC…O2A, N2A—H2AD…O4B, O3B—H1O3…O3A, C10A—H1OA…O4B and C7A—H7AA…O3B intermolecular hydrogen bonds (Table 1), forming a two-dimensional network parallel to the *bc*-plane.

The crystal structure is a merohedral twin, with BASF = 0.3214 (15).

Experimental

A hot methanol solution (20 ml) of 4-aminopyridine (0.0471 g, Aldrich) and glutaric acid (0.0661 g, Merck) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. Colourless crystals were obtained after a few days.

Refinement

Oxygen-bound H atoms were located in a difference map [O-H = 0.8903 and 0.9176 Å]. Nitrogen- and carbon-bound H atoms were positioned geometrically [N-H = 0.86 Å and C-H = 0.93-0.97 Å]. All hydrogen atoms were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2. The crystal packing, showing hydrogen-bonded (dashed lines) 2D networks parallel to to the *bc*-plane. H atoms not involved in the intermolecular interactions have been omitted for clarity.

4-Aminopyridinium 4-carboxybutanoate

Crystal data

$C_5H_7N_2^+ \cdot C_5H_7O_4^-$	F(000) = 960
$M_r = 226.23$	$D_{\rm x} = 1.368 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 8906 reflections
a = 9.6159 (2) Å	$\theta = 2.5 - 30.1^{\circ}$
b = 10.3065 (2) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 22.6801 (5) Å	T = 296 K
$\beta = 102.143 \ (1)^{\circ}$	Block, colourless
V = 2197.45 (8) Å ³	$0.35\times0.26\times0.21~mm$
Z = 8	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube graphite 7931 independent reflections 5556 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$

ϕ and ω scans	$\theta_{\text{max}} = 32.6^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -14 \rightarrow 14$
$T_{\min} = 0.963, T_{\max} = 0.978$	$k = -15 \rightarrow 15$
7931 measured reflections	$l = -11 \rightarrow 34$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.154$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0758P)^{2} + 0.2205P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7931 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
290 parameters	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{iso}*/U_{eq}$
O1A	0.28193 (16)	1.02435 (13)	0.06872 (6)	0.0516 (3)
H1O1	0.2530	1.0161	0.0289	0.077*
O2A	0.41099 (16)	0.95000 (13)	0.15319 (5)	0.0478 (3)
O3A	0.76925 (16)	0.49292 (13)	0.05256 (5)	0.0528 (4)
O4A	0.74003 (16)	0.55719 (12)	0.14167 (5)	0.0454 (3)
C1A	0.3787 (2)	0.94695 (15)	0.09826 (7)	0.0352 (3)
C2A	0.4485 (2)	0.85513 (16)	0.06135 (7)	0.0370 (3)
H2AA	0.5028	0.9059	0.0381	0.044*
H2AB	0.3745	0.8103	0.0330	0.044*
C3A	0.5465 (2)	0.75453 (16)	0.09724 (7)	0.0352 (3)
H3AA	0.6264	0.7976	0.1230	0.042*
H3AB	0.4955	0.7064	0.1227	0.042*
C4A	0.60070 (19)	0.66165 (16)	0.05536 (7)	0.0366 (3)

supplementary materials

H4AA	0.5202	0.6144	0.0322	0.044*
H4AB	0.6415	0.7121	0.0271	0.044*
C5A	0.7105 (2)	0.56458 (15)	0.08576 (7)	0.0346 (3)
N1A	0.28175 (17)	0.87243 (15)	0.83697 (7)	0.0449 (4)
H1AA	0.2264	0.9279	0.8486	0.054*
N2A	0.53978 (18)	0.60387 (16)	0.78136 (7)	0.0499 (4)
H2AC	0.5341	0.5918	0.7434	0.060*
H2AD	0.5987	0.5590	0.8072	0.060*
C6A	0.3744 (2)	0.80430 (19)	0.87789 (8)	0.0488 (4)
H6AA	0.3778	0.8191	0.9186	0.059*
C7A	0.4634 (2)	0.71465 (18)	0.86214 (8)	0.0461 (4)
H7AA	0.5268	0.6692	0.8915	0.055*
C8A	0.45783 (19)	0.69135 (17)	0.79991 (8)	0.0379 (3)
C9A	0.3609 (2)	0.76547 (17)	0.75810 (7)	0.0399 (4)
H9AA	0.3548	0.7543	0.7169	0.048*
C10A	0.2754 (2)	0.85416 (19)	0.77826 (8)	0.0434 (4)
H10A	0.2115	0.9027	0.7504	0.052*
O1B	1.22169 (16)	-0.01002 (13)	0.95900 (5)	0.0527 (4)
O2B	1.10552 (17)	0.05354 (13)	0.86994 (5)	0.0494 (3)
O3B	0.72084 (16)	0.52422 (13)	0.94174 (6)	0.0532 (4)
H1O3	0.7347	0.5145	0.9828	0.080*
O4B	0.76125 (17)	0.44368 (13)	0.85744 (5)	0.0524 (3)
C1B	1.12988 (19)	0.06276 (15)	0.92524 (7)	0.0359 (3)
C2B	1.05243 (19)	0.16092 (15)	0.95600 (7)	0.0357 (3)
H2BA	1.1223	0.2127	0.9831	0.043*
H2BB	0.9966	0.1148	0.9803	0.043*
C3B	0.9547 (2)	0.25132 (15)	0.91350(7)	0.0342 (3)
H3BA	0.8792	0.2016	0.8884	0.041*
H3BB	1.0079	0.2948	0.8874	0.041*
C4B	0.89090 (19)	0.35155 (16)	0.94935 (7)	0.0361 (3)
H4BA	0.8441	0.3063	0.9773	0.043*
H4BB	0.9677	0.4023	0.9731	0.043*
C5B	0.7856 (2)	0.44294 (16)	0.91214 (7)	0.0358 (3)
N1B	-0.04752 (17)	0.37734 (15)	0.17394 (7)	0.0453 (4)
H1BA	-0.1137	0.4333	0.1619	0.054*
N2B	0.26087 (18)	0.10594 (16)	0.23042 (7)	0.0494 (4)
H2BC	0.2914	0.0928	0.2684	0.059*
H2BD	0.2946	0.0613	0.2046	0.059*
C6B	0.0019 (2)	0.35827 (19)	0.23332 (8)	0.0440 (4)
H6BA	-0.0348	0.4067	0.2611	0.053*
C7B	0.1058 (2)	0.26829 (17)	0.25317 (7)	0.0402 (4)
H7BA	0.1392	0.2560	0.2943	0.048*
C8B	0.16224 (19)	0.19448 (17)	0.21178 (7)	0.0377 (3)
C9B	0.1092 (2)	0.21875 (18)	0.14972 (8)	0.0463 (4)
H9BA	0.1444	0.1734	0.1206	0.056*
C10B	0.0059 (2)	0.30944 (19)	0.13355 (8)	0.0494 (5)
H10B	-0.0291	0.3250	0.0927	0.059*

Atomic displacement parameters	$(Å^2)$
Alomic displacement parameters	(л)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0584 (8)	0.0587 (8)	0.0349 (6)	0.0303 (7)	0.0034 (6)	-0.0017 (6)
O2A	0.0626 (9)	0.0535 (7)	0.0270 (5)	0.0165 (7)	0.0085 (6)	-0.0009 (5)
O3A	0.0656 (9)	0.0597 (8)	0.0334 (6)	0.0320 (7)	0.0109 (6)	-0.0008 (6)
O4A	0.0568 (8)	0.0485 (7)	0.0289 (6)	0.0187 (6)	0.0043 (6)	-0.0008 (5)
C1A	0.0396 (9)	0.0387 (8)	0.0277 (7)	0.0068 (7)	0.0083 (6)	0.0003 (6)
C2A	0.0420 (9)	0.0428 (8)	0.0262 (7)	0.0128 (8)	0.0073 (6)	0.0014 (6)
C3A	0.0401 (8)	0.0367 (7)	0.0288 (7)	0.0081 (6)	0.0068 (7)	-0.0011 (6)
C4A	0.0397 (8)	0.0421 (8)	0.0274 (7)	0.0105 (8)	0.0056 (6)	-0.0012 (6)
C5A	0.0383 (8)	0.0351 (7)	0.0298 (7)	0.0065 (7)	0.0056 (6)	-0.0012 (6)
N1A	0.0506 (9)	0.0441 (8)	0.0422 (8)	0.0090 (7)	0.0148 (7)	-0.0026 (6)
N2A	0.0533 (10)	0.0551 (9)	0.0386 (8)	0.0173 (8)	0.0036 (7)	-0.0042 (7)
C6A	0.0620 (12)	0.0484 (10)	0.0347 (8)	0.0055 (10)	0.0071 (8)	-0.0039(7)
C7A	0.0564 (12)	0.0457 (9)	0.0334 (8)	0.0097 (9)	0.0029 (8)	-0.0012 (7)
C8A	0.0392 (8)	0.0369 (8)	0.0362 (8)	0.0018 (7)	0.0048 (7)	-0.0005 (6)
C9A	0.0458 (10)	0.0465 (9)	0.0261 (7)	0.0040 (7)	0.0044 (7)	0.0019 (6)
C10A	0.0456 (10)	0.0477 (9)	0.0375 (8)	0.0034 (8)	0.0102 (7)	0.0027 (7)
O1B	0.0608 (8)	0.0608 (8)	0.0340 (6)	0.0342 (7)	0.0042 (6)	0.0021 (6)
O2B	0.0653 (9)	0.0533 (7)	0.0293 (6)	0.0242 (7)	0.0094 (6)	0.0018 (5)
O3B	0.0653 (9)	0.0577 (8)	0.0353 (6)	0.0334 (7)	0.0073 (6)	0.0009 (6)
O4B	0.0659 (9)	0.0579 (8)	0.0288 (6)	0.0227 (7)	-0.0008 (6)	-0.0005 (5)
C1B	0.0407 (9)	0.0373 (8)	0.0301 (7)	0.0084 (7)	0.0087 (7)	0.0018 (6)
C2B	0.0406 (9)	0.0380 (8)	0.0281 (7)	0.0122 (7)	0.0063 (6)	0.0011 (6)
C3B	0.0401 (8)	0.0344 (7)	0.0273 (7)	0.0066 (6)	0.0054 (7)	-0.0005 (6)
C4B	0.0398 (8)	0.0389 (7)	0.0279 (7)	0.0095 (7)	0.0032 (6)	-0.0035 (6)
C5B	0.0387 (9)	0.0343 (7)	0.0321 (7)	0.0076 (7)	0.0019 (6)	-0.0010 (6)
N1B	0.0458 (9)	0.0450 (8)	0.0424 (8)	0.0103 (7)	0.0030 (7)	0.0035 (6)
N2B	0.0553 (10)	0.0565 (9)	0.0368 (8)	0.0171 (8)	0.0105 (7)	0.0065 (7)
C6B	0.0468 (10)	0.0480 (9)	0.0368 (9)	0.0012 (9)	0.0078 (7)	-0.0046 (7)
C7B	0.0461 (10)	0.0455 (9)	0.0278 (7)	0.0047 (8)	0.0048 (7)	-0.0013 (6)
C8B	0.0406 (9)	0.0390 (8)	0.0342 (8)	0.0033 (7)	0.0095 (7)	0.0019 (6)
C9B	0.0577 (12)	0.0480 (9)	0.0330 (8)	0.0116 (9)	0.0093 (8)	-0.0003 (7)
C10B	0.0588 (12)	0.0554 (10)	0.0325 (9)	0.0105 (10)	0.0062 (8)	0.0045 (8)

Geometric parameters (Å, °)

O1A—C1A	1.299 (2)	O1B—C1B	1.2823 (19)
O1A—H1O1	0.8903	O2B—C1B	1.2303 (19)
O2A—C1A	1.2194 (18)	O3B—C5B	1.310 (2)
O3A—C5A	1.269 (2)	O3B—H1O3	0.9176
O4A—C5A	1.2423 (18)	O4B—C5B	1.2133 (19)
C1A—C2A	1.511 (2)	C1B—C2B	1.511 (2)
C2A—C3A	1.518 (2)	C2B—C3B	1.516 (2)
C2A—H2AA	0.9700	C2B—H2BA	0.9700
C2A—H2AB	0.9700	C2B—H2BB	0.9700
C3A—C4A	1.516 (2)	C3B—C4B	1.521 (2)

supplementary materials

СЗА—НЗАА	0.9700	СЗВ—НЗВА	0.9700
СЗА—НЗАВ	0.9700	СЗВ—НЗВВ	0.9700
C4A—C5A	1.511 (2)	C4B—C5B	1.505 (2)
С4А—Н4АА	0.9700	C4B—H4BA	0.9700
C4A—H4AB	0.9700	C4B—H4BB	0.9700
N1A—C10A	1.333 (2)	N1B—C10B	1.338 (2)
N1A—C6A	1.342 (2)	N1B—C6B	1.345 (2)
N1A—H1AA	0.8600	N1B—H1BA	0.8600
N2A—C8A	1.323 (2)	N2B—C8B	1.320 (2)
N2A—H2AC	0.8600	N2B—H2BC	0.8600
N2A—H2AD	0.8600	N2B—H2BD	0.8600
С6А—С7А	1.357 (3)	C6B—C7B	1.368 (3)
С6А—Н6АА	0.9300	C6B—H6BA	0.9300
C7A—C8A	1.422 (2)	C7B—C8B	1.403 (2)
С7А—Н7АА	0.9300	С7В—Н7ВА	0.9300
C8A—C9A	1.407 (2)	C8B—C9B	1.415 (2)
C9A—C10A	1.370 (3)	C9B—C10B	1.357 (3)
С9А—Н9АА	0.9300	С9В—Н9ВА	0.9300
C10A—H10A	0.9300	C10B—H10B	0.9300
C1A-01A-H101	120.0	C5B-03B-H103	117.8
O2A—C1A—O1A	120.78 (15)	O2B-C1B-O1B	121.54 (15)
O2A—C1A—C2A	122.33 (15)	O2B—C1B—C2B	121.05 (14)
O1A—C1A—C2A	116.89 (13)	O1B—C1B—C2B	117.40 (13)
C1A—C2A—C3A	115.41 (12)	C1B—C2B—C3B	114.68 (13)
C1A—C2A—H2AA	108.4	C1B—C2B—H2BA	108.6
C3A—C2A—H2AA	108.4	C3B—C2B—H2BA	108.6
C1A—C2A—H2AB	108.4	C1B—C2B—H2BB	108.6
C3A—C2A—H2AB	108.4	C3B—C2B—H2BB	108.6
H2AA—C2A—H2AB	107.5	H2BA—C2B—H2BB	107.6
C4A—C3A—C2A	110.61 (12)	C2B—C3B—C4B	110.07 (12)
С4А—С3А—НЗАА	109.5	С2В—С3В—Н3ВА	109.6
С2А—С3А—НЗАА	109.5	С4В—С3В—Н3ВА	109.6
С4А—С3А—НЗАВ	109.5	С2В—С3В—Н3ВВ	109.6
С2А—С3А—НЗАВ	109.5	C4B—C3B—H3BB	109.6
НЗАА—СЗА—НЗАВ	108.1	НЗВА—СЗВ—НЗВВ	108.2
C5A—C4A—C3A	115.55 (13)	C5B—C4B—C3B	115.13 (13)
С5А—С4А—Н4АА	108.4	C5B—C4B—H4BA	108.5
СЗА—С4А—Н4АА	108.4	C3B—C4B—H4BA	108.5
C5A—C4A—H4AB	108.4	C5B—C4B—H4BB	108.5
C3A—C4A—H4AB	108.4	C3B—C4B—H4BB	108.5
H4AA—C4A—H4AB	107.5	H4BA—C4B—H4BB	107.5
O4A—C5A—O3A	122.35 (15)	O4B—C5B—O3B	120.63 (15)
O4A—C5A—C4A	119.61 (14)	O4B—C5B—C4B	122.68 (15)
O3A—C5A—C4A	118.04 (13)	O3B—C5B—C4B	116.69 (13)
C10A—N1A—C6A	120.06 (16)	C10B—N1B—C6B	120.21 (16)
C10A—N1A—H1AA	120.0	C10B—N1B—H1BA	119.9
C6A—N1A—H1AA	120.0	C6B—N1B—H1BA	119.9
C8A—N2A—H2AC	120.0	C8B—N2B—H2BC	120.0
C8A—N2A—H2AD	120.0	C8B—N2B—H2BD	120.0

H2AC—N2A—H2AD	120.0	H2BC—N2B—H2BD	120.0
N1A—C6A—C7A	122.55 (17)	N1B—C6B—C7B	120.57 (17)
N1A—C6A—H6AA	118.7	N1B—C6B—H6BA	119.7
С7А—С6А—Н6АА	118.7	С7В—С6В—Н6ВА	119.7
C6A—C7A—C8A	118.83 (17)	C6B—C7B—C8B	120.38 (16)
С6А—С7А—Н7АА	120.6	С6В—С7В—Н7ВА	119.8
С8А—С7А—Н7АА	120.6	С8В—С7В—Н7ВА	119.8
N2A—C8A—C9A	120.67 (16)	N2B—C8B—C7B	120.90 (15)
N2A—C8A—C7A	122.04 (16)	N2B-C8B-C9B	121.69 (16)
C9A—C8A—C7A	117.29 (16)	C7B—C8B—C9B	117.41 (16)
C10A—C9A—C8A	119.73 (16)	C10B—C9B—C8B	118.75 (17)
С10А—С9А—Н9АА	120.1	C10B—C9B—H9BA	120.6
С8А—С9А—Н9АА	120.1	C8B—C9B—H9BA	120.6
N1A—C10A—C9A	121.52 (17)	N1B-C10B-C9B	122.66 (17)
N1A—C10A—H10A	119.2	N1B-C10B-H10B	118.7
C9A—C10A—H10A	119.2	C9B—C10B—H10B	118.7
O2A—C1A—C2A—C3A	8.1 (3)	O2B—C1B—C2B—C3B	-4.8 (3)
O1A—C1A—C2A—C3A	-172.34 (16)	O1B—C1B—C2B—C3B	175.08 (17)
C1A—C2A—C3A—C4A	175.44 (15)	C1B—C2B—C3B—C4B	-175.99 (14)
C2A—C3A—C4A—C5A	174.42 (15)	C2B—C3B—C4B—C5B	-176.94 (15)
C3A—C4A—C5A—O4A	6.7 (3)	C3B—C4B—C5B—O4B	-5.5 (3)
C3A—C4A—C5A—O3A	-173.38 (17)	C3B—C4B—C5B—O3B	175.12 (16)
C10A—N1A—C6A—C7A	-0.6 (3)	C10B—N1B—C6B—C7B	-0.9 (3)
N1A—C6A—C7A—C8A	-0.3 (3)	N1B-C6B-C7B-C8B	0.0 (3)
C6A—C7A—C8A—N2A	-178.87 (18)	C6B—C7B—C8B—N2B	-178.91 (18)
C6A—C7A—C8A—C9A	1.1 (3)	C6B—C7B—C8B—C9B	1.0 (3)
N2A—C8A—C9A—C10A	178.99 (18)	N2B-C8B-C9B-C10B	178.79 (18)
C7A—C8A—C9A—C10A	-1.0 (3)	C7B-C8B-C9B-C10B	-1.1 (3)
C6A—N1A—C10A—C9A	0.8 (3)	C6B—N1B—C10B—C9B	0.8 (3)
C8A—C9A—C10A—N1A	0.1 (3)	C8B—C9B—C10B—N1B	0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1A—H1O1···O1B ⁱ	0.89	1.57	2.4591 (17)	172.
N1A—H1AA…O1B ⁱⁱ	0.86	2.59	3.183 (2)	127.
N1A—H1AA···O2B ⁱⁱ	0.86	1.87	2.729 (2)	177.
N2A—H2AC···O2A ⁱⁱⁱ	0.86	2.18	2.9627 (19)	151.
N2A—H2AD···O4B	0.86	2.10	2.948 (2)	170.
O3B—H1O3···O3A ^{iv}	0.92	1.56	2.4791 (17)	176.
C10A—H10A····O4B ^{v}	0.93	2.55	3.161 (2)	124.
С7А—Н7АА…ОЗВ	0.93	2.47	3.370 (2)	162.
~				-

Symmetry codes: (i) x-1, y+1, z-1; (ii) x-1, y+1, z; (iii) x, -y+3/2, z+1/2; (iv) x, y, z+1; (v) -x+1, y+1/2, -z+3/2.

